Automatic Test Data Generation for Data Flow Testing Using a Genetic Algorithm
نویسنده
چکیده
One of the major difficulties in software testing is the automatic generation of test data that satisfy a given adequacy criterion. This paper presents an automatic test data generation technique that uses a genetic algorithm (GA), which is guided by the data flow dependencies in the program, to search for test data to cover its def-use associations. The GA conducts its search by constructing new test data from previously generated test data that are evaluated as effective test data. The approach can be used in test data generation for programs with/without loops and procedures. The proposed GA accepts as input an instrumented version of the program to be tested, the list of def-use associations to be covered, the number of input variables, and the domain and precision of each input variable. The algorithm produces a set of test cases, the set of def-use associations covered by each test case, and a list of uncovered defuse associations, if any. In the parent selection process, the GA uses one of two methods: the roulette wheel method or a proposed method, called the random selection method, according to the user choice. Finally, the paper presents the results of the experiments that have been carried out to evaluate the effectiveness of the proposed GA compared to the random testing technique, and to compare the proposed random selection method to the roulette wheel method.
منابع مشابه
Optimizing Cost Function in Imperialist Competitive Algorithm for Path Coverage Problem in Software Testing
Search-based optimization methods have been used for software engineering activities such as software testing. In the field of software testing, search-based test data generation refers to application of meta-heuristic optimization methods to generate test data that cover the code space of a program. Automatic test data generation that can cover all the paths of software is known as a major cha...
متن کاملAutomatic Software Test Data Generation for Spanning Sets Coverage Using Genetic Algorithms
Software testing takes a considerable amount of time and resources spent on producing software. Therefore, it would be useful to have ways to reduce the cost of software testing. The new concepts of spanning sets of entities suggested by Marré and Bertolino are useful for reducing the cost of testing. In fact, to reduce the testing effort, the generation of test data can be targeted to cover th...
متن کاملAutomatic Generation of Data Flow Test Paths using a Genetic Algorithm
Path testing a program involves generating all paths through the program, and finding a set of program inputs that will execute every path. Since it is impossible to cover all paths in a program, path testing can be relaxed by selecting a subset of all executable paths that fulfill a certain path selection criterion and finding test data to cover it. The automatic generation of such test paths ...
متن کاملAutomatic Data Flow Test Paths Generation using the Genetical Swarm Optimization Technique
Path testing requires generating all paths through the program to be tested, and finding a set of program inputs that will execute every path. The number of possible paths in programs containing loops is infinite, and so it is very difficult, if not impossible, to test all of them. Path testing can be relaxed by selecting a subset of all executable paths that fulfill a certain path selection cr...
متن کاملAutomatic Generation of Test Cases Based On Multi-population Genetic Algorithm
The design of automatic generation technology of test case is an important part of the software test automation implementation, having an important guiding role in testing of late work, which is the fundamental guarantee to improve the reliability of software. In this paper, considering the lack of adequacy of control flow testing, using the data flow testing as the test adequacy criteria, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. UCS
دوره 11 شماره
صفحات -
تاریخ انتشار 2005